Résumé
This book offers a concise and comprehensive introduction to Hierarchical Quantile Modeling, a modern statistical methodology that extends traditional hierarchical models and quantile regression techniques to analyze complex data structures often found in fields like biology, economics, and education. Unlike classic models, Hierarchical Quantile Modeling accommodates heteroscedasticity and nonparametric relationships, allowing for a detailed study of the entire conditional distribution of a response variable.The book is structured in four parts: an introduction to hierarchical modeling, a detailed look at quantile regression, an in-depth exploration of Hierarchical Quantile Modeling, and practical applications using real-world hierarchical, repeated, and clustered data. Drawing on the author’s decade-long experience in research and teaching, this guide is ideal for graduate students, researchers, and practitioners. It includes examples and software guidance using R, S-plus, SAS, and SPSS, making it a valuable resource for anyone interested in advanced statistical analysis.
Auteur
Caractéristiques
Éditeur : EDP Sciences
Publication : 7 novembre 2024
Intérieur : Noir & blanc
Support(s) : Livre numérique eBook [PDF]
Contenu(s) : PDF
Protection(s) : Marquage social (PDF)
Taille(s) : 30,9 Mo (PDF)
Langue(s) : Anglais
Code(s) CLIL : 3052
EAN13 Livre numérique eBook [PDF] : 9782759837205
Vous aimerez aussi
Selected Mathematical Works: Symbolic Logic + The Game of Logic + Feeding the Mind
by Charles Lutwidge Dodgson, alias Lewis Carroll
0,99 €
Éléments d'analyse de la fiabilité et du contrôle de qualité
Statistiques appliquées par l'exemple
69,99 €



